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The Number of topologies on n points.

S.D. Chatterji, University of Copenhagen.

Abstract: Upper and lower bounds are obtained for the number of
all topologies and the number of To-topologies on n points. Various
conjectures regarding the magnitudes cf these numbers are also

stated.

§ 1 Introduction:

Let p(n) be the total number af distinct (possibly homeomorphic)
topologies on n points and let po(n) be the number cf Tg-topologies
on n points. In this paper, I have tried to obtain reasonable
upper and lower bounds for p{(n) and po{n). These are obtained and
discussed in the next section. Clearly, the bounds are unsatis-
factory but seem to be much better than what is known {compare
[2]). I show that p(n) and pg(n) vary like ecn?.  This is in

sharp contrast to Bn(notation determined historically), the number
of Borel-fields on n elements, since B, = o(ecnz) for any c>0.

See [5].

I consider the case of only finite cardinals n in this paper. If

o is any infinite cardinal, it is known that p(a) = 22° (see
Sierpinski [4] pp. 82) but I do not know of any discussion of the
number of'TO, Tys-..,topologies. For a finite cardinal, of course,

there is only one T or better separated topclogy.

]3
After the present article was completed, Mr. S. Johansen attracted

my attention to the recently published article of Evans, Harary and
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Lynn "On the Computing enumeration of finite topologies" in
Communications cf ACM Vol. 10, No. 5, May, 1967. The present
paper has much overlap with that article. My methods, however,
seem more straight-forward. The values of p(n) and po(n) for
n=5,6,7 in the table in the next section are taken from the
above-mentioned paper. The other values for n=1 to 4 were
obtained by systematic enumeration following the discussion
developed in the next section and tally with the figures in the
aboVe-mentioned paper. See also [2].

I should 1ike to thank Mr. Richard Piotrowski for various helpful
numerical calculations and Professcr de Bruijn for several pene-

trating observations.
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Let S be a finite set containing n distinct elements labelled say,
for cenvenience, by the integers 1,2,... n. O0Of all the possible
equivalent ways of defining a topology on S, I shall choose the
one by means of closure operators satisfying Kuratowski's postu-
lates. Because of the finiteness of S, a closure operator is
uniquely and completely determined by a function F from S to P(S),
the set of all subsets of S, which satisfies the following
propertieé:

(a) for all xeS, xeF(x) and (b) if yeF(x) then F(y)cF(x).

If now F(A), for AcS, is defined to be {J{F(x): xeA} then F satis-
fies the usual closure postulates viz. F(g) = ¢ (¢ = empty set),
F(AN DA, F(F(A))=F(A), F(AUB) = F(A)UF(B). The problem then is

te count the number p(n) of distinct functions F satisfying (a)




and (b) abocve. The function F induces a TO-topology (definition:
given x,y, X ¥ y, -} an oper set containing x and not containing y
or vice versa) if and only if given x,y,x ¥ y, either x¢ F(y) or

y £ F(x) or both. Let pg(n) be the number of Tg-topologies on §.

If we write now x Ry if x e F(y), it is immediately verified that
R defines a raflexive and transitive relation orn S. Conversely,
given a reflexive and transitive relation R on S, the function
F(x) = {yly R x} is a mappiag of S to P(S) satisfying (a) and (b)
above. Hence p(n) is the same as the number of reflexive and
transitive relations on S. Similarly it follows that po(n) is

the number of reflexive, anti-symmetric and transitive relaticn-
ships on S, i.e. the number of partial orders cn S. This latter

fact is well-known see e.g. Birkhoff {i] pp. 14.

It is useful at this point to rcte that there is a simple rela-

tionship between p(n) and po(n) viz.
n
p(n) = E an,kpo(K)

where 8, | = the number of distinct partitions of S into k disjcint,
3

non-empty subsets. E.g. ap 1=1, ap 2= 2"']-],... a 1. To prove

n,no
this formula, one can argue as follows. Given a reflexive and
transitive R, define x n y if ¥y R x and x R y. This is clearly an
equivalence relationship and on the partition induced by this

equivalence, R induces a partial order. From here, the formula

follows immediately. Explicit formulae for a, g can be written



n
down but only the sum B, = ap,k will be needed. Then B s are the

sc-called exponential numbers (also called Bell numbers cor Euler
numbers) and equal the number of distinct partitions of S (or
equivalence relationships on S or aigebras of sets on S). An
estimate of Bn will be menticned iater. For a recent report on the

Bés see Rota [3].

I shall now cbtain upper and lower bounds for po(n). From these,

bounds for p(n) will be deduced.

I shall use the familiar device of Hasse diagrams slightly elabo-
rated, for getting information about pO(n), the number of partial

orders ¢n S. Given a partial order <, define for xeS,
d(x) = max {k| x]<x2<...<xk_]<x}.

Clearly (the inequality will not be used later) 1<d(x)<|F(x)],
where |A| = cardinal number of A and F is the function introduced
before which induces the TO-topology which gives the partial crder.
If d(x) = d(y), then x must be unrelated tc y. Now aefine a I b

(a immediately belew b) if a<b but for noc c, a<c<b. Clearly, if

a I b, then d(b)>d(a) + 1. Both strict equality cr inequality are
possible.' Further, given xeS, d(x)>2 there is a yeS such that

y I x, d(y) = d(x) - 1. Form now the Hasse diagram as follows.

Let m = max {d(x)|[xeS}, 1<m<n. Arrarge the points of S in m rows ,
the x with d(x) = k, 1<k<m, being put in the kth now. Join x with
y if anc only if x I y or y I x. Such a diagram is fully character-

ized by the following description. Points are arranged in m non-empty



rews, points of the same row are rever joined, each point of the ith
row, i>2, is jcined to at least cne point of the (i-1)st row anc a
pocint cf the ith row can be joined to a point of the jth row, j>i,
if and only if there is nc path going through intermediate rows
which jcins them. Let hm(n) be the number ¢f such m-rowed Hasse
diagrams. Then ciearly,

f

po(1) = % ()

I, hy(n) = 1. On the other hand,

It is easy to see that h](n)

n-1
holn) = = (R)(2""Tr-1)r .
r=1

It is easily seen, by considering the maximum term in the sum for
h,(n) that
2
h (n)>C'2n2/4'( n ), 0<C<1
2 [2] s
Hence

Po(n)>h2(n)>C°2n2/4([§])

It is useless to try to improve the lower bound for py(n) by this
method by ccnsidering hs(n), hg(n) etc. sirce they are all easily

proved to be _o(2°‘n ) o<a<k. The further major contributions seem

to come from hk(n)(n) where k(n) is a suitable function of n.

I shall now cbtain some upper bounds for py(n). Fn easy one is

3 ﬂi%:ll, cerived from the fact that this is the number of reflexive

and anti-symmetric relaticnships orn S. A better one will now be

derived by using Hasse diagrams. The number of Hasse diagrams is

clearly less than n! times the total number of undirected graphs




on n points which is Zﬁiﬁ%lln The multiplicaticn by n! is

necessary Lc sllow for arranging the peints in different rows
ﬂLﬂlll. Numerical evidence, (see

2
1 r"]
table later) seems tc indicate that py(n)> 23i4§*l for n>1 but I

("cclours"). Hence po(n)<n!- )

have nct beern atle to cenme even close to this.

Finally, the tormula for p(n) in terms of po(n) gives us, thet
n{n-1

po(n)<p(n)<nt- Z,J;Tf_l By 01

The general crders of magnitude of p(n) and po(n) will now Le

expressed in the following staterent which is merely a weak de-

duction from the akove.

Theorem:

c.on2/4 ([g])<p0(n)<p(n)<n! . Eiﬂ%ll B, (n>1) 0<C<1.

[

, ) ,
. n)/2n2/4 1 n2/4 .
1im po(n)/ lin p(n)/2
L 2 5 2
lim po(n)/z(5+€)“ - Tim p(n) 2tEEI" =0
N> N>«

for any e>0.

2
") for any

The last statement follows from the fact that B, = ole
a>0 (See Szekeres and Binet [5])). Of course, what one should like
to have is that there is a constant o>0 such that 2("“')n2 is toeo
large and‘Z(d'e)“z toc small for pp(n) and p(n). It is to be
strcngly suspected that o=% is the right answer and actually the

following table suggests the even stronger conjecture that for n>1

: - A -1
(n-1)- "7 o (my<ptmyent+ "5



n pg (n) p(n) B,

) ] 1 1
2 3 i 2
3 19 29 5
4 219 355 15
5 4,231 6,942 52
6 130,023 209,527 203
7 6,129,859 9,535,241 877

As a check for the accuracy of the figures in the table, note that
po(n) is always an cad number and p(n) has the same parity as B, -
This follows by noting thaet if R is a partial order releationship
oﬁ S, then the oppesite partial order R' (i.e. x R' y iff y R x)
is distinct frem R in all cases except for the triviel partial
order where x Ky iff x @ y. Hence pg(n) = 1 (mod 2) and sc

p(n) = E an,szn (mod 2). Following & conjecture of the author,
Professg;]de Bruijn has shown that B, is even if and only if

n=2 (mod 3). This shows that p(n) is even if n=2 (mod 3) and odd
otherwise. See [5] for references to tables of B,. I should
1ike to point out that the orders of magritude fcr the non-homeo-
morphic topolegies are still in the same neighbourhood as

p(n) or Po(“) (viz. 2a“2, L<a<k) since they differ at most by a

factor of nt.

It is easy to see that p(n)>np{(n-1) as also that pO(n)>np0(n-l).
Both these fellow (and can be considerably improved) by the follow-

ing argument, given for T, -topologies. Given n points, choose any

0




one point (in n ways) and define its closure to be the whole set.
For the rest of the points choose any To—topo1ogy. The whole still

gives a Tp-topology and po(n)>np0(n-1) is proved. Similarly for

< p(n)  _
pim ng—IT B

It also follows from p(n)=

p(rn). Hence
m P_O(n_)___ =
P> poj?‘--]j

ankpo(k) that

+ .

~—

im {p(n)-pg(n)} = +=.

~
f o3
j—

Whether lim EL%lT =+ « or not, I do not know. I suspect that the
. n->o p

1imit is finite and between 1 and 2.
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